Math 131A: Analysis

Discussion 1: Introduction to Proofs

1 Direct Proofs

- 1. Prove for all $x, y \in \mathbb{Q}$, $x + y \in \mathbb{Q}$ and $xy \in \mathbb{Q}$.
- 2. If n is an odd integer, prove that n^2 is an odd integer.
- 3. Prove for all $x, y \in \mathbb{R}$, $|x + y| \le |x| + |y|$.

2 Proof by Contradiction

- 1. Prove that $\sqrt{2}$ is irrational.
- 2. Prove that a rational number plus an irrational number must be irrational.
- 3. Challenge: Prove there are infinitely many prime numbers.

3 Proof by Contrapositive

- 1. If n is an integer and n^2 is odd, prove that n is odd.
- 2. Suppose $x, y \in \mathbb{Z}$. If $5 \nmid xy$, then $5 \nmid x$ and $5 \nmid y$.
- 3. Let $x \in \mathbb{Z}$. If $x^2 6x + 5$ is even, then x is odd.