Math 131A: Analysis

Discussion 8: Continuous and Uniformly Continuous Functions

1 Limits of Functions

Definition: Let $A \subset \mathbb{R}$, and $c \in A$ a limit point of A. Then, $\lim_{x\to c} = L$ if for every sequence $\lim a_n \to c$ converging to c, we have $\lim_{n\to\infty} f(a_n) = L$.

Definition: The right hand limit of f(x) at c is $\lim_{x\to c^+} f(x) = R$, and exists if for every sequence $a_n > c$ converging to c, $\lim_{n\to\infty} f(a_n) = R$.

The left hand limit of f(x) at c is $\lim_{x\to c^-} f(x) = L$, and exists if for every sequence $a_n < c$ converging to c, $\lim_{n\to\infty} f(a_n) = L$.

- 1. For the following functions, what are the right and left limits at 0? What are the limits at $\pm \infty$?
 - (i) $f(x) = \frac{x^3}{|x|}$
 - (ii) $f(x) = \frac{\sin x}{x}$
 - (iii) $f(x) = \sin \frac{1}{x}$
- 2. Let $A \subset \mathbb{R}$. Let $f: A \to \mathbb{R}$ and $c \in \mathbb{R}$ a limit point of A. Prove the following:

$$\lim_{x \to c} f(x) = L \iff \lim_{x \to c^+} f(x) = L = \lim_{x \to c^-} f(x)$$

2 Continuous Functions

Definition: Let $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$. f is *continuous* at a point $c \in A$ if for all $\epsilon > 0$, there exists $\delta > 0$ such that

$$|x - c| < \delta \implies |f(x) - f(c)| < \epsilon$$
.

1

f is continuous on A if it is continuous at every point $c \in A$.

Compositions of Continuous Functions: Let $f, g: A \to \mathbb{R}$ be continuous functions

- (i) af + bg are continuous $\forall a, b \in \mathbb{R}$
- (ii) $f \cdot g$ is continuous
- (iii) $f \circ g$ is continuous where defined
- (iv) $\frac{f}{g}$ is continuous where defined

- 1. Prove that f is continuous at x_0 using ϵ - δ
 - (a) $f(x) = x^2$, $x_0 = 2$
 - (b) $f(x) = \sqrt{x}, x_0 = 0$
 - (c) $x_0 = 0$,

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

- (d) $g(x) = x^3, x_0 \in \mathbb{R}$ arbitrary
- 2. Prove that f is discontinuous at x_0
 - (a) $x_0 = 0$

$$f(x) = \begin{cases} 1 & x > 0 \\ 0 & x \le 0 \end{cases}$$

(b) $x_0 = 0$

$$g(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & x \neq 0\\ g & x = 0 \end{cases}$$

3.

$$f(x) = \begin{cases} 1 & x = 0\\ \frac{1}{q} & x = \frac{p}{q}, \gcd(p, q) = 1\\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Show that f is continuous at all irrational numbers and discontinuous at each rational number.

3 Uniform Continuity

Definition: Let $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ a function. f is uniformly continuous on A if for all $\epsilon > 0$, there exists a $\delta > 0$ such that for all $x, y \in A$,

$$|x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$$

- 1. Prove the following functions are uniformly continuous on the indicated set
 - (a) f(x) = 3x + 11 on \mathbb{R}
 - (b) $f(x) = x^2$ on [0,3]
 - (c) $f(x) = \frac{1}{x}$ on $\left[\frac{1}{2}, \infty\right)$
- 2. $g:(a,b)\to\mathbb{R}$ continuous. Prove g is uniformly continuous on (a,b) iff there exists a continuous function $f:[a,b]\to\mathbb{R}$ that extends g.