Math 61: Introduction to Discrete Structures Discussion 2: Functions (cont.) and Intro to Proofs (Section 2.1)

1 Functions (cont.)

- 1. How many functions are there from $\{1,2\}$ to $\{a,b\}$? Which ones are onto? Which ones are one-to-one?
- 2. Determine whether the following functions $f: \mathbb{Z} \to \mathbb{Z}$ are one-to-one or onto, or both. Prove your answers
 - (i) f(n) = n + 1
 - (ii) f(n) = 2n
 - (iii) $f(n) = n^2 1$
 - (iv) $f(n) = n^3$
- 3. Let $f: X \to Y$ be a function. Let

$$S = \{ f^{-1}(\{y\}) : y \in Y \}$$

Show S is a partition of X.

4. Let f and g be functions from $\mathbb{R}_{\geq 0}$ to $\mathbb{R}_{\geq 0}$ defined by the equations

$$f(x) = |2x|, g(x) = x^2$$

Find the compositions $f \circ f, g \circ g, f \circ g, g \circ f$.

5. Given

$$f = \{(a,b), (b,a), (c,b)\},\$$

a function from $\{a, b, c\}$ to $\{a, b, c\}$.

- (a) Write $f \circ f$ and $f \circ f \circ f$ as sets of ordered pairs
- (b) Define $f^n = f \circ f \circ \ldots \circ f$ (n-times). Write f^9 and f^{623} as sets of ordered pairs.
- 6. Prove that if n is an odd integer, then

$$\lfloor \frac{n^2}{4} \rfloor = \left(\frac{n-1}{2}\right) \left(\frac{n+1}{2}\right)$$

2 Introduction to Proofs (Section 2.1)

- 1. Prove that for all numbers $x, y \in \mathbb{Q}$, $x + y \in \mathbb{Q}$ and $xy \in \mathbb{Q}$.
- 2. If $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$, then $X \subseteq Y$ for all sets X and Y.
- 3. Disprove that $\mathcal{P}(X \cup Y) \subseteq \mathcal{P}(X) \cup \mathcal{P}(Y)$ for all sets X and Y.
- 4. If a and b are real numbers we define $\max\{a,b\}$ to be the maximum of a and b or the common value if they are equal. Prove that for all real numbers d, d_1, d_2, x ,

if
$$d = \max\{d_1, d_2\}$$
 and $x \ge d$, then $x \ge d_1$ and $x \ge d_2$

- 5. Assume the following are given. Let $a, b, c \in \mathbb{R}$.
 - (Additive Identity for 0) b + 0 = b
 - (Distributive Law) a(b+c) = ab + ac
 - (Additive Cancellation) If a + b = a + c, then b = c

Prove from these assumptions that $x \cdot 0 = 0$ for any $x \in \mathbb{R}$.